Hacking Bluetooth enabled mobile phones and beyond – **Full Disclosure**

Adam Laurie Marcel Holtmann Martin Herfurt

21C3: The Usual Suspects

21st Chaos Communication Congress
December 27th to 29th, 2004
Berliner Congress Center, Berlin, Germany
Who we are

• Adam Laurie
 - CSO of The Bunker Secure Hosting Ltd.
 - Co-Maintainer of Apache-SSL
 - DEFCON Staff/Organiser

• Marcel Holtmann
 - Maintainer and core developer of the Linux Bluetooth Stack BlueZ

• Martin Herfurt
 - Security Researcher
 - Founder of trifinite.org
Outline (1)

- Bluetooth Introduction
- History
- Technology Overview
- The BlueSnarf Attack
- The HeloMoto Attack
- The BlueBug Attack
- Bluetooone
- Long-Distance Attacking
Outline (2)

- Blooover
- Blueprinting
- DOS Attacks
- Sniffing Bluetooth with hcidump
- Conclusions – Lessons tought
- Feedback / Discussion
Bluetooth Introduction (1)

- Wire replacement technology
- Low power
- Short range 10m - 100m
- 2.4 GHz
- 1 Mb/s data rate
Bluetooth Introduction (2)

- Bluetooth SIG
 - Trade Association
 - Founded 1998
 - Owns & Licenses IP
 - Individual membership free
 - Promoter members: Agere, Ericsson, IBM, Intel, Microsoft, Motorola, Nokia and Toshiba
 - Consumer http://www.bluetooth.com
 - Technical http://www.bluetooth.org
History (1)

- Bluejacking
 - Early adopters abuse 'Name' field to send message
 - Now more commonly send 'Business Card' with message via OBEX
 - 'Toothing' - Casual sexual liaisons
History (2)

- **Bluesnarfing**
 - First publicised by Marcel Holtmann, October 2003
 - Wireless Technologies Congress, Sindelfingen, Germany
 - Adam Laurie, A L Digital, November 2003
 - Bugtraq, Full Disclosure
 - Houses of Parliament
 - London Underground
 - 'Snarf' - networking slang for 'unauthorised copy'
History (3)

• Bluesnarfing
 - Data Theft
 - Calendar
 • Appointments
 • Images
 - Phone Book
 • Names, Addresses, Numbers
 • PINs and other codes
 • Images
History (4)

• Bluebugging
 - First publicised by Martin Herfurt, March 2004
 • CeBIT Hanover
 - Create unauthorised connection to serial profile
 - Full access to AT command set
 - Read/Write access to SMS store
 - Read/Write access to Phone Book
History (5)

- Full Disclosure after 13 months
 - More time for manufacturers to fix
 - Embedded devices
 - New process for telecom industry
 - Nokia claims to have fixed all vulnerable devices
 - Firmware updates available
 - 6310i tested OK
 - Motorola committed to fix known vulnerabilities
 - Sony Ericsson publicly stated “all problems fixed”
Bluetooth Technology

• Data and voice transmission
 • ACL data connections
 • SCO and eSCO voice channels

• Symmetric and asymmetric connections

• Frequency hopping
 • ISM band at 2.4 GHz
 • 79 channels
 • 1600 hops per second
 • Multi-Slot packets
Bluetooth Piconet

- Bluetooth devices create a piconet
 - One master per piconet
 - Up to seven active slaves
 - Over 200 passive members are possible
 - Master sets the hopping sequence
 - Transfer rates of 721 Kbit/sec
- Bluetooth 1.2 and EDR (aka 2.0)
 - Adaptive Frequency Hopping
 - Transfer rates up to 2.1 Mbit/sec
Bluetooth Scatternet

- Connected piconets create a scatternet
 - Master in one and slave in another piconet
 - Slave in two different piconets
 - Only master in one piconet
 - Scatternet support is optional

![Scatternet Diagram]

M = Master
S = Slave
P = Parked
SB = Standby
Bluetooth Architecture

• Hardware layer
 • Radio, Baseband and Link Manager
 • Access through Host Controller Interface
 – Hardware abstraction
 – Standards for USB and UART

• Host protocol stack
 • L2CAP, RFCOMM, BNEP, AVDTP etc.

• Profile implementations
 • Serial Port, Dialup, PAN, HID etc.
Bluetooth Stack

- Application specific security mechanisms
- Bluetooth host security mechanisms
- Security mechanisms on the Bluetooth chip
Bluetooth Security

- **Link manager security**
 - All security routines are inside the Bluetooth chip
 - Nothing is transmitted in “plain text”

- **Host stack security**
 - Interface for link manager security routines
 - Part of the HCI specification
 - Easy interface
 - No further encryption of pin codes or keys
Security Modes

- **Security mode 1**
 - No active security enforcement
- **Security mode 2**
 - Service level security
 - On device level no difference to mode 1
- **Security mode 3**
 - Device level security
 - Enforce security for every low-level connection
Linux and Bluetooth

```bash
# hciconfig -a
hci0:   Type: USB
       BD Address: 00:02:5B:A1:88:52 ACL MTU: 384:8  SCO MTU: 64:8
       UP RUNNING PSCAN ISCAN
       RX bytes:9765 acl:321 sco:0 events:425 errors:0
       TX bytes:8518 acl:222 sco:0 commands:75 errors:0
       Features: 0xff 0xff 0x8b 0xfe 0x9b 0xf9 0x00 0x80
       Packet type: DM1 DM3 DM5 DH1 DH3 DH5 HV1 HV2 HV3
       Link policy: RSWITCH HOLD SNIFF PARK
       Link mode: SLAVE ACCEPT
       Name: 'Casira BC3-MM'
       Class: 0x1e0100
       Service Classes: Networking, Rendering, Capturing, Object Transfer
       Device Class: Computer, Uncategorized
       HCI Ver: 1.2 (0x2) HCI Rev: 0x529 LMP Ver: 1.2 (0x2) LMP Subver: 0x529
       Manufacturer: Cambridge Silicon Radio (10)

# hcitool scan
Scanning ...
00:04:0E:21:06:FD       AVM BlueFRITZ! AP-DSL
00:01:EC:3A:45:86       HBH-10
00:04:76:63:72:4D       Aficio AP600N
00:A0:57:AD:22:0F       ELSA Vianect Blue ISDN
00:E0:03:04:6D:36       Nokia 6210
00:80:37:06:78:92       Ericsson T39m
00:06:C6:C4:08:27       Anycom LAN Access Point
```
Sniffing with hcidump

- Recording of HCI packets
 - Commands, events, ACL and SCO data packets
- Only for local connections
- Decoding of higher layer protocols
 - HCI and L2CAP
 - SDP, RFCOMM, BNEP, CMTP, HIDP, HCRP and AVDTP
 - OBEX and CAPI
- No sniffing of baseband or radio traffic
Security Commands

- HCI_Create_New_Unit_Key
- HCI_{Read|Write}_Pin_Type
- HCI_{Read|Write|Delete}_Stored_Link_Key
- HCI_{Read|Write}_Authentication_Enable
- HCI_{Read|Write}_Encryption_Mode

- HCI_Authentication_Requested
- HCI_Set_Connection_Encryption
- HCI_Change_Local_Link_Key
- HCI_Master_Link_Key
Pairing Functions

• Events
 • HCI_Link_Key_Notification
 • HCI_Link_Key_Request
 • HCI_Pin_Code_Request

• Commands
 • HCI_Link_Key_Request_Replay
 • HCI_Link_Key_Request_Negative_Replay
 • HCI_Pin_Code_Request_Replay
 • HCI_Pin_Code_Request_Negative_Replay
How Pairing Works

• First connection
 1. HCI_Pin_Code_Request
 2. HCI_Pin_Code_Request_Reply
 3. HCI_Link_Key_Notification

• Further connections
 1. HCI_Link_Key_Request
 2. HCI_Link_Key_Request_Reply
 3. HCI_Link_Key_Notification (optional)
BlueSnarf

- Trivial OBEX PUSH channel attack
 - obexapp (FreeBSD)
 - PULL known objects instead of PUSH
 - No authentication

- Infrared Data Association
 - IrMC (Specifications for Ir Mobile Communications)
 - e.g. telecom/pb.vcf

- Ericsson R520m, T39m, T68
- Sony Ericsson T68i, T610, Z1010
- Nokia 6310, 6310i, 8910, 8910i
HeloMoto

- Requires entry in 'Device History'
- OBEX PUSH to create entry
- Connect RFCOMM to Handsfree or Headset
 - No Authentication required
 - Full AT command set access
- Motorola V80, V5xx, V6xx and E398
BlueBug History (1)

- First presentation in February 2004
 - FH Salzburg 'Forum IKT 2004'
 - Spicing up a presentation about Wardriving
- Got inspired from Adam's BlueSnarff which has been written about on slashdot
- Tried to figure out how Adam did it (no purpose-built tools available)
- Found BlueBug
 - Based on AT Commands -> not OBEX
BlueBug History (2)

- Fieldtrial at CeBIT 2004
 - Booth close to the restrooms -> many people there
 - Even Policemen ;)
- Got on slashdot at the end of March 2004
- Teamed up with Adam in April 2004
- Various media citations
- Presentation at Blackhat and DEFCON in August 2004
- Full Disclosure at 21C3 in December 2004 (now!)
BlueBug Facts (1)

- As mentioned earlier...
 - BlueBug is based on AT Commands (ASCII Terminal)
 - Very common for the configuration and control of telecommunications devices
 - High level of control...
 - Call control (turning phone into a bug)
 - Sending/Reading/Deleting SMS
 - Reading/Writing Phonebook Entries
 - Setting Forwards
 - -> causing costs on the vulnerable phones!
BlueBug Facts (2)

- How come!?
 - Various Manufacturers poorly implemented the Bluetooth security mechanisms
 - Unpublished services on RFCOMM channels
 - Not announced via SDP
- Connecting to unpublished HS service without pairing!
 - Nokia has quite a lot of models (6310, 6310i, 8910, 8910i, ...)
 - Sony Ericsson T86i, T610, ...
 - Motorola has similar problems (see HeloMoto)
Bluetootone

- Enhancing the range of a Bluetooth dongle by connecting a directional antenna -> as done in the Long Distance Attack
- Original idea from Mike Outmesguine (Author of Book: “Wi-Fi Toys”)
- Step by Step instruction on trifinite.org
Long-Distance Attacking (BlueSniper)

- Beginning of August 2004 (right after DEFCON 12)
- Experiment in Santa Monica California
- Modified Class-1 Dongle Snarfing/Bugging Class-2 device (Nokia 6310i) from a distance of 1.78 km (1.01 miles)
Bloooover - What is it?

- Bloooover - *Bluetooth* Wireless Technology Hoover
- Proof-of-Concept Application
- Educational Purposes only
- Phone Auditing Tool
- Running on Java
 - J2ME MIDP 2.0
 - Implemented JSR-82 (Bluetooth API)
 - Nokia 6600, Nokia 7610, Nokia 6670, ... Series 60
 - Siemens S65
 - SonyEricsson P900 ...
Blooover- What does it do?

- Blooover is performing the BlueBug attack
 - Reading phonebooks
 - Writing phonebook entries
 - Reading/decoding SMS stored on the device (buggy..)
 - Setting Call forward (predef. Number) +49 1337 7001
 - Initiating phone call (predef. Number) 0800 2848283
 - Not working well on Nokia phones :(
 - but on some T610
- Please use this application responsibly!
 - For research purposes only!
 - With permission of owner
Blueprinting – What is it?

- Blueprinting is fingerprinting *Bluetooth* Wireless Technology interfaces of devices
- This work has been started by Collin R. Mulliner and Martin Herfurt
- Relevant to all kinds of applications
 - Security auditing
 - Device Statistics
 - Automated Application Distribution
- Released paper and tool at 21C3 in December 2004 in Berlin (again, now!)
Blueprinting - How

- Hashing Information from Profile Entries
 - RecordHandle
 - RFCOMM channel number
 - Adding it all up \((\text{RecHandle}_1 \times \text{Channel}_1) + (\text{RecHandle}_2 \times \text{Channel}_2) + \ldots + (\text{RecHandle}_n \times \text{Channel}_n)\)

- Bluetooth Device Address
 - First three bytes refer to manufacturer (IEEE OUI)

- Example of Blueprint

 \[00:60:57@2621543\]
BlueSmack

• Using L2CAP echo feature
 - Signal channel request/response
 - L2CAP signal MTU is unknown
 - No open L2CAP channel needed
• Buffer overflow
• Denial of service attack
BlueSmack

< HCI Command: Create Connection (0x01|0x0005) plen 13
 0000: b6 1e 33 6d 0e 00 18 cc 02 00 00 00 01 ..2m........
> HCI Event: Command Status (0x0f) plen 4
 0000: 00 01 05 04
> HCI Event: Connect Complete (0x03) plen 11
 0000: 00 29 00 b6 1d 32 6d 0e 00 01 00 .)...2m....

< ACL data: handle 0x0029 flags 0x02 dlen 28
 L2CAP(s): Echo req: dlen 20
 0000: 45 46 47 48 49 4a 4b 4c 4d 4e 50 51 52 53 54 55 56 57 58 EFGHIJKLMNOPQRST UVWX
> HCI Event: Number of Completed Packets (0x13) plen 5
 0000: 01 29 00 01 00 .)...
> ACL data: handle 0x0029 flags 0x02 dlen 28
 L2CAP(s): Echo rsp: dlen 20
 0000: 45 46 47 48 49 4a 4b 4c 4d 4e 50 51 52 53 54 55 56 57 58 EFGHIJKLMNOPQRST UVWX

< HCI Command: Disconnect (0x01|0x0006) plen 3
 0000: 29 00 13 ..
> HCI Event: Command Status (0x0f) plen 4
 0000: 00 01 06 04
> HCI Event: Disconn Complete (0x05) plen 4
 0000: 00 29 00 16 .)...
Conclusions

- Bluetooth is a secure standard (per se)
 - Problems at application level
- Cooperation with Bluetooth SIG
 - Pre-release testing at UPF (UnPlugFest)
 - Specifics under NDA
 - Better communication channels for external testers
 - Security Expert Group mailing list
 - bluetooth.org more open areas
 - Mandatory security at application level
trifinite.org

- http://trifinite.org/
- Loose association of BT security experts
- Features
 - trifinite.blog
 - trifinite.stuff
 - trifinite.album
 - trifinite.group
trifinite.group

- Adam Laurie (the Bunker Secure Hosting)
- Marcel Holtmann (BlueZ)
- Collin Mulliner (mulliner.org)
- Tim Hurman (Pentest)
- Mark Rowe (Pentest)
- Martin Herfurt (trifinite.org)
- Spot (Sony)
Questions / Feedback / Answers

- Contact us via 21c3@trifinite.org (group alias for Adam, Marcel and Martin)